
©2022 F521

Serves static
assets

Runs
application
code

Proxies to
backends

©2022 F522

The vision for Unit

The only server component required to
build web apps and APIs
• Deliver complete web applications with fewer

pieces
• Homogenous benefits: consistency, configuration

Evolved architecture derived from NGINX

• Don't invent a new configuration language/syntax
• Reconfiguration happens in-situ (no reloads)
• Flexible request routing, decoupled from network

ports

©2022 F523

Unit

(thread)(thread)

How Unit plays chess

• Main process starts Unit
and creates/destroys the
other processes

• Controller process
accepts new configuration
and applies it to the router

• Router process (multi-
threaded) handles client
requests in async event
loop

👨💻 Router

👩💻

👩💻

GET /index.html HTTP/1.1

GET /api/weather/v1/today HTTP/1.1

POST /upload.php HTTP/1.1

Main Controller

©2022 F524

Unit

(thread)(thread)

How Unit plays more than chess

• Main process starts Unit
and creates/destroys the
other processes

• Controller process
accepts new configuration
and applies it to the router

• Router process (multi-
threaded) handles client
requests in async event
loop

• Application processes
(prototype and workers)
run the application code

👨💻 Router

👩💻

👩💻

GET /index.html HTTP/1.1

GET /api/weather/v1/today HTTP/1.1

POST /upload.php HTTP/1.1

Main Controller

.html

.js .css

appapp
appapp

©2022 F525

Unit runs apps across many languages and frameworks

©2022 F526

Node.JS challenges

Serving static
files is non- trivial

Routing for static and dynamic
content needs a reverse proxy

TLS performance sucks

Complex containers and the
multi-daemon anti-pattern

©2022 F527

©2022 F528

Simplifying the application stack

Unit

Code

Platform with a kernel

Abstracted data store

Code + Framework

Web server / reverse proxy

Service Proxy
Developer-controlled

Load Balancer

Runtime platform

Abstracted data store

©2022 F529

…

Flexible configuration that spans network and runtime
Infrastructure as code for the entire stack

listeners

applications

routes

upstreams

pass

proxy

pass

pass

Layer 4 Layer 7 User Space Layer 7
TCP/TLS/ports Headers, URIs Code/Files IP/ports

pass

/files/on/diskshare

External
servicespass

©2022 F530

Why you should use Unit?

Build applications
Simplify microservices
Modernize monoliths

Deploy to production
Encrypt end-to-end
Isolate applications

©2022 F531

A reference architecture
Secure runtime environment

Unit

High-performance
L4 load balancing

SNI routing

TLS TLS TLS Router App
proc

Shared
memory

Cert

cgroup, chroot,
runuser (per-app)

©2022 F532

Get started with NGINX Unit

• unit.nginx.org

Installation, configuration, and how-to docs

• github.com/nginx/unit

Code, issues

• community.nginx.org/joinslack
• unit@nginx.org (https://mailman.nginx.org/)

Community, discussion

https://community.nginx.org/joinslack
https://mailman.nginx.org/

